Limiting one-point distribution of periodic TASEP
نویسندگان
چکیده
Il est attendu que la limite du temps de relaxation pour distribution à un point processus d’exclusion simple totalement asymétrique et périodique en espace classe universelle KPZ domaine périodique. Contrairement au cas ligne infinie, dépend façon non-triviale des paramètres d’échelle temps. Nous étudions plusieurs propriétés cette dans le lois initiales pas périodiques plates. montrons change loi Tracy–Widom petits Gaussienne grands, nous obtenons aussi une estimée queue tous les De plus, établissons relation avec équations différentielles intégrables telles KP, systèmes couplés mKdV chaleur non-linéaires, l’équation KdV.
منابع مشابه
Output Sum of Transducers: Limiting Distribution and Periodic Fluctuation
As a generalization of the sum of digits function and other digital sequences, sequences defined as the sum of the output of a transducer are asymptotically analyzed. The input of the transducer is a random integer in [0, N). Analogues in higher dimensions are also considered. Sequences defined by a certain class of recursions can be written in this framework. Depending on properties of the tra...
متن کاملFluctuation properties of the TASEP with periodic initial configuration
We consider the joint distributions of particle positions for the continuous time totally asymmetric simple exclusion process (TASEP). They are expressed as Fredholm determinants with a kernel defining a signed determinantal point process. We then consider certain periodic initial conditions and determine the kernel in the scaling limit. This result has been announced first in a letter by one o...
متن کاملA Directional Uniformity of Periodic Point Distribution and Mixing
For mixing Zd-actions generated by commuting automorphisms of a compact abelian group, we investigate the directional uniformity of the rate of periodic point distribution and mixing. When each of these automorphisms has finite entropy, it is shown that directional mixing and directional convergence of the uniform measure supported on periodic points to Haar measure occurs at a uniform rate ind...
متن کاملPeriodic Point Data Detects Subdynamics in Entropy Rank One
A framework for understanding the geometry of continuous actions of Z was developed by Boyle and Lind using the notion of expansive behavior along lower-dimensional subspaces. For algebraic Z-actions of entropy rank one, the expansive subdynamics is readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank one action determine the ...
متن کاملUniform Periodic Point Growth in Entropy Rank One
We show that algebraic dynamical systems with entropy rank one have uniformly exponentially many periodic points in all directions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1171